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Abstract 

The area between the continental shelf and the Gulf Stream is known as the slopewater 
region. In the past fifty years several experiments and studies of this region have taken 
place with the Mid-Atlantic Continental Slope and Rise (MASAR) experiment being one 
of the most recent. Csanady and Hamilton (1988) compiled all the known information 
and data from the slopewater region and developed a simple dynamical model of the 
flow. Based on this model's transport stream function and Stommel's Gulf Stream 
model, finite centered differencing was used to develop a numerical scheme of slopewater 
circulation. 

The model was first developed using Stommel's parameters for circulation within 
the North Atlantic Gyre. Stommel's model was used as the basis for the new scheme 
in order to calibrate the model with his exact solution of the streamfunction for the 
North Atlantic Gyre. Once verified, Stommel's parameters were replaced by Csanady 
and Hamilton's values for slopewater. This is a report on the development of a new 
numerical model. It is also a comparison of the new scheme to both Csanady and 
Hamilton's model and an observational schematic for the region from the MASAR 
experiment. 

Keywords: Circulation-Slopewater-Modeling-Physical Oceanography 



1     Circulation- A Short History 

Ocean circulation can be described as either wind-driven or thermohalinp   TT, 

ffiü^r*--"—** *-» -* " E ~*£ 
• the pressure gradient is balanced solely by the Coriolis force, 

• horizontal velocities and pressure gradient disappear with depth, 

• lateral stresses are neglected, 

• and the flow is steady-state. 
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• to determine the general circulation features on the continental slope and rise 
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Figure 1: Schematic of Observational Data in the Slopewater Region from MASAR 



The MASAR experiment involved several cruises in the region to put into place many 
data collection tools such as current meters and to collect water samples and real time 
data. Csanady was the key person for the interpretation of data for upper slope circu- 
lation in the MASAR experiment. He compiled all the major sources of information on 
the slopewater region and produced a simple, linear dynamical model of circulation in 
the area. His model is developed under the following assumptions: 

• the flow is steady-state, 

• Coriolis is balanced by wind stress, 

• and the region is rectangular. 

The model also includes non-zero boundary conditions for the streamfunction. Csanady 
and Hamilton's paper Circulation of Slopewater (1988) included an observational sce- 
matic (Figure 1) from the MASAR experiment showing the details of Slopewater circu- 
lation as it thought to occur. This paper is the springboard for the numerical scheme 
that was developed to reproduce this schematic. 

2    The Model 

The development of the model began with the following basic assumptions: 

• the water parcel is a homogeneous layer of incompressible fluid, 

• the region is enclosed in a rectangular box, 

• there are zero boundary conditions, 

• and the flow is steady-state. 

The density is assumed to be constant throughout the parcel because it is a relatively 
shallow layer of approximately 500 meters. Therefore it is reasonable to assume incom- 
pressibility. The formulations that are the foundation of modeling slopewater circulation 
are presented in sections 2.1 through 2.4 of this paper. 

2.1     Compressibility 

The compressibility of a liquid ß is defined by 

where ß is the compressibility, V is the volume, p is the pressure, % is the change of 
volume with time, and & is the change of pressure with time. 
If the fluid is incompressible then ß must be zero. Therefore 

V)  (f) = ° (2) 



If the mass of fluid is constant over volume, V and density is p=m/V then 

1 dp      V d  fm\ 1 dV 
p dt      mdt \VJ V  dt      ° ^ 

Hence incompressibility occurs when y^f = 0oT^^ = 0 [Pond and Pickard, 1983] . 
Incompressibility is an important assumption in this problem for it allows the stream 
function, tp, to exist. 

2.2    Stream Function 

The total material derivative of the fluid density is known to be 

t = f + *.V„ . (4, 
For an incompressible fluid, the density does not change. In this case 

The equation of continuity which is given by 

^ + V(pv) = 0 (6) 

can be expanded in the form of 

dp 
-£ + v-Vp + pV-v = 0. (7) 

By substitution, the equation of continuity of an incompressible fluid becomes 

V-t; = 0, (8) 

which is expressed below for a two-dimensional flow velocity , v= (u,v) as 

du     dv 
T* + Ty = ° <»> 

For the equation of continuity to be satisfied, let u = -^ and v = —■§£, where ip is the 
two-dimensional streamfunction of fluid dynamics. The velocity field vis now expressed 
in vector form 

When rb is a constant, the streamfunction produces curves known as streamlines. A 
streamline is a curve in space drawn so that the velocity vectors are tangent to the 
curve. This allows the velocity field to be represented by streamlines. 



2.3    Stommel's Gulf Stream 

Stommel's Gulf Stream model is the pattern for the slopewater model. His model is 
based on the following assumptions: 

• the ocean is rectangular with the y-axis pointing northward and the x-axis east- 
ward 

• the boundaries of the rectangle are between 0<z<AandO<2/<6 

• the ocean is a homogeneous layer of constant depth D when at rest 

• when there are currents, the total depth is D + h where the depth varies by h 
which is much smaller than D 

• functional form of the wind stress acting over the area is -Fcos(^) 

• the fractional dissipative forces are -Ru and -Rv where R is the coefficient of 
friction and u and v are the velocity components 

• the Coriolis parameter f is introduced as a function of y. 

The steady-state equations of motion are written in the following manner: 
The equation for motion in the y direction is 

0 = f(D + h)v-Fcos(^.)-Ru-9(D + h)^ (11) 

The equation for motion in the x direction is 

0 = -f(D + h)u -Rv- g(D + h)^. (12) 

These equations are cross-differentiated and the equation of continuity is applied to the 
equations of motion resulting in 

<B+^*(TW?M£-£)-.     (u, 
To a first approximation, h is negligible compared to D. This allows the previous equa- 
tion to be rewritten as 

_„   ,      •   firy\     dv     du aV + 7SmU-J + ^-^ = ° (14) 
where a = (ß)  (§Z) and 7 = §. 

The ocean is considered to be incompressible which allows the introduction of the stream 
function. From the previous equation, the general equation is stated as 

** + <>% = V*(T)- («) 



and assumed boundary conditions are 

V>(0, y) = tf (A, y) = ^(z, o) = ^(x, b) = 0 . (16) 

Stommel solves the nonhomogeneous differential equation by inspection and separation 
of variables for i]) (See Appendix B for an example of this method.). The resulting 
stream function is 

i> = l(l)   sm(^j[peAx + qeB*-l], (17) 

where p = (p^sr) and g = 1 - p 
In order to analyze the stream function numerically, Stommel introduced the following 
parameters:   X = 109cm, b = 2x x 108cm, D = 2 x 104cm, F = ldyne/cm2, and 
R = 0.02.   F and R were picked arbitrarily in order to produce the correct physical 
features. 

When Coriolis is considered to be a linear function of latitude, the streamlines 
indicate an intensification of current velocities along the western boundary. This is the 
region of the Gulf Stream [Stommel, 1948]. 

2.4    Csanady's Transport Stream Function 

In Csanady and Hamilton (1988), a transport stream function for slopewater circu- 
lation was introduced. It is given by 

dJLd_l_dJLdJ__ 
dx dy     8ydx~ (lb) 

where W is the value for the wind stress curl over the rectangular region.  Here, ip is 
the stream function. The approximations to the Coriolis acceleration are P and |£. 
The transport stream function is subject to the following boundary conditions: 

0 ifx=0, 0<y<b/2 
0 ify=0, 0<x<a 

TP={-K2£± ifx=0, b/2<y<b (19) 
G% ifx=a, 0<y<b 
(G + iOf ify=b, 0<x<a 

where G is the inflow from the Gulf Stream, K is the inflow of the Coastal Labrador 
Sea Water, x and y are the coordinates, a is the length of the box along the x-axis, and 
b is the length of the box along the y-axis. 
The differential equation of Csanady and Hamilton was developed using several impor- 
tant assumptions that are mentioned below: 

• the dimensions of the idealized basin are 200 km wide by 1600 km long 

• the mean depth is 500 m overlying an inert, deep, very heavy water mass 

• the Coriolis parameter is / = 10_4s_1 which increases northward at the rate of 
ß= 1.6 x lO-11™-1*-1, 
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• the wind stress curl is one of the driving factors of the circulation, 

• the flow is steady-state, and 

• a rotated coordinate system is used where the cartesian coordinate system is 
rotated 67 deg from north. 

By inspection, one can find the differences between the equation stated by Csanady 
and Hamilton and the equation given by Stommel in the previous section. Csanady and 
Hamilton discount any frictional dissipative force by discarding the Laplacian term. 
This helps to simplify the problem and the numerics associated with it. The bound- 
ary conditions are non-zero indicating an influence imposed upon the body by cur- 
rent flows. The wind stress curl is a constant independent of the y variable. (See 
[Csanady and Hamilton, 1988] for more details.) 

3    Discretization 

The first step in developing the numerical scheme is to discretize a differential equa- 
tion which describes the flow. The equation selected was a compilation of Stommel's 
streamfunction and Csanady and Hamilton's stream function. The equation introduced 
in the previous section was modified to include a frictional dissipative force with the ad- 
dition of the Laplacian. The differential equation that was the basis for all calculations 
is 

(20) eV2ip + ai>x = W 

where e and a are arbitrary constants and W is the wind stress curl. 

3.1     Rotation of Coordinates 

The previous equation is oriented in the North-South coordinate system. To make 
the equation applicable to the slope sea region and for better comparison to Csanady 
and Hamilton s equation, it is necessary to rotate the coordinates by 67 deg from North 
The rotation was accomplished in the following linear. In general- 

where 

and 

cos a       sm a 
— sin a   cos a 

x - xcosa + ys'ma, 

y = -xsina + ycosa 

are the rotated coordinates. In the slopewater case: 

COS(2TT - a)       sin(27r - a) 
- sin(27T - a)   cos(27r - a) 

x 

y 

(21) 

(22) 

(23) 

(24) 
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Using trigonometric identities, the previous equation becomes 

y' 

cos a   — sin a 
sin a       cos a 

Here the rotated coordinates are given by 

x = x cos a — ysma, 

x 

y 
(25) 

(26) 

y' = x sin a + y cos a (27) 

By utilizing the previous two identities, it is possible to rotate Stommel's equation 
into Csanady and Hamilton's region for Slopewater. By performing this operation, it 
becomes apparent how the slopewater transport function was developed. The mathe- 
matical operations are outlined below: 

iKx,y) = il>\x',y') (28) 

m. 

.  ,      .     d^'dx'     drP'dy' 

A = -Q~I 
cos a + -Q-;sm a 

d (dA 
^=dx-{-d?COSa + dy 

- sm a I 

(29) 

(30) 

(31) 

Let cos a = c and sin a = s, then the second derivatives of the streamfunction become 

^ÄC2ÖV   l0_._öV_,   „2*V 
dx'2 + 2cs + s 

dx'dy'        dy'2 

_ dA_d^_     dip'dy' 
v     dx' dy      dy' dy 

dV       d# 

Ay = C2 

dx' 

2cs- + 5' 
,öV av_2cs_9V 

Vyv -     dy'2 dx'dy' ' " dx'2 

(32) 

(33) 

(34) 

(35) 

The Laplacian V2^ is defined to be Ax + Ay When this is performed on the equa- 
tions for rotated coordinates, the sine and cosine terms drop out leaving the following 
equation: 

Ax + Ay = Ax>x>Ay-y. (36) 

From this point onward, all references to x,y,and ip will be assumed to be in the rotated 
coordinate system unless stated otherwise. 

The new equation in the rotated coordinate system becomes by substitution of the 
previous equation into Csanady and Hamilton's transport streamfunction 

^(Ax + Ay) + Ot(cA + SA) = W (37) 
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3.2    Finite Differences 

Finite differencing is a numerical method used to describe a continuous region with 
discrete points. At each point there is an approximated value which describes the do- 
main. A truncation error is produced for each approximation. This will be the difference 
between the exact solution and the numerical scheme. The method of approximation 
is based on the expansion of the Taylor series. For centered differences, the Taylor 
series is expanded both in the forward direction and in the backward direction i e 
u(x + Ax,y) and u(x - Ax,y), subtracted, and divided by twice the incremental'step 
(See [Ames, 1992] for specific details.) . 

For this problem the Laplacian of iß and the first order derivatives of if, must be 
approximated using the following finite centered differences (Appendix A): 

%v - p (38) 

V« - v L (39) 

% ~ Tk (40) 

*' ~ Th (41) 

where Ä = —, k = ^-, and i and j reference the discrete points within the domain 
These approximations are substituted into the transport streamfunction equation 

with rotated coordinates. The finite differenced equation becomes 

£ ^,rti-*fr,f+frlT--i   + ^+i.,-2^.,-+^_1|T\ + 

a[c(Ä±l^^)+,(&u±l^ 

Solving for ^ one is left with the approximation of the domain at each point. 

^ ~ al ~ ST^-j+i - -V>,,i-i - -^+1J - ~^_u (42) 

whereal =-2,(^ + ^)^2= ^+ff,G3=^_f,,a4 = ^ + f?anda5=^_f._ 

3.3    Iterative Method 

The iterative method used for the numerical scheme is the Gauss-Seidel method   This 
method owes its derivation from the linear algebra equation that is given by Ax = b 
This method is known as the method of successive displacements or iteration by single 
steps    Here   the calculations are based on the immediate use of the improved values 
(See [Ames, 1992] for more details.). The computation utilizes the following equation- 
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x.    _ . (43) 

where k is the number of iterations and i and j correspond to the row and column entries 
in the matrix. 

In the numerical scheme for slopewater circulation the number of iterations were 
determined by the numerical output. The program, written using the Mathematica 
package and run on a SPARC20 Sun station, was instructed to continue computation 
until the maximum error was on the order of 10~7. 

4    Calibration Techniques 

Numerical schemes must be validated before one can feel confident that the output of 
the model is indeed reasonable. This was accomplished by two methods of calibration. 
The first was a comparison to the Stommel Gulf Stream model. The second was a 
boundary condition verification. 

4.1 Slopewater vs. Gulf Stream 

The first calibration was a comparison of numerical output to an exact solution.(See 
Figure 2.) The exact solution to Stommel's differential equation discussed previously 
was produced. This was then compared to the numerical output when the parameters of 
Stommel's model were introduced into the model. In addition the boundary conditions 
were set equal to zero and the forcing term was set equal to a sine function instead of 
a constant. The absolute value of the difference between the maximum values of the 
exact solution and the numerical solution was then calculated. The difference was on 
the order of 10~8 after 500 iterations. 

4.2 Boundary Verification 

The second calibration was a boundary condition verification. The stream function 
was determined to be tftx, y) = sin(^f) sinh(^) by separation of variables. (See Appen- 
dices B and C.) The first normal mode was given as the northern boundary condition 
with all other boundaries being zero. In the numerical scheme, W, a, and s were set 
equal to zero while c was set equal to one. The numerical solution was once again 
compared to the exact solution (Figure 3). 

5    Discussion of Model Outputs 

Several runs of the model were performed using various parameters. The first set 
of parameters was based solely on the constants and boundary conditions given by 
Csanady and Hamilton. The second set of parameters was a combination of Csanady 
and Hamilton's parameters and self-imposed boundary conditions. 
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Figure 2:  Stommel's model nrodnrpH K„ *i,„ •    , 

The lines represent the «^Ä^ SeTZL,'^d-   ^J™«** D'2-> 
the streamfunction. The axes represent t^ , represent different values of 

-ine axes represent the dimensions of the calculated matrix. 



15 

Figure 3: Boundary Verification by comparison of the exact solution of a specified 
streamfunction to the numerical solution of the same streamfunction. The curves are 
streamlines with different shades indicating different values of ip. The exact contour has 
axes represented in units of length. The numerical solution has axes which represent 
the dimensions of the matrix.(See Appendix D.l .) 
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5.1     Csanady and Hamilton's Parameters 

Three different products were produced by varying the Gulf Stream constant, G, 
which is a value of flux rate of the Gulf Stream. In the case where G = 2 x 106m3

s-\ 
there is an intense crowding of stream lines near the northwestern boundary indicating 
a large velocity gradient. There is a small deflection eastward of the Gulf Stream. ( See 
Figure 4.) As G increases to 6 x 106 and lO7™3*"1 there is an increased deflection of 
the Gulf Stream eastward and a decreasing velocity gradient in the northwest corner. 
(See Figures 5 and 6.). These products can be compared to the outputs of Csanady 
and Hamilton. A comparison shows that both models indicate greater deflection of the 
Gulf Stream with increased flux rate. 

The boundary conditions imposed do not create a velocity field which corresponds 
to the field that is actually observed. ( See Figure 1.) The velocity field only represents 
a small section of the slopewater region. In order to more accurately represent the 
circulation which is known to occur, new boundary conditions were developed and 
introduced into the model. 

5.2    New Boundary Conditions 

New boundary conditions were developed from inspection of the observational scheme 
Based on the actions of the streamlines, functions were chosen to approximate the 
motion of the flow.  The boundary condition on the continental shelf was determined 
to be ^(0,y) = 0 because there is no fluid flow across the boundary, only parallel to 
the shelf.  The boundary condition on the southwestern edge $(x,0) = 0 because the 
flow changes directions but once again does not cross the boundary of the region   The 
final two boundaries were approximated by functions dependent on either x or y   The 
Gulf Stream side has two boundary conditions. For tf(l,y.), when 0 < y < b/X  $ = 0 
When b/X <y< 6/2A, ^ is approximated by a line. The Gulf Stream is represented 
in this fashion because after the current flows along the region for half of the distance 
the stream enters into the slopewater.  The northern edge must represent the change 
in direction of the fluid flow due to the exit of the Gulf Stream and the entrance of 
the Coastal Labrador Sea Water.  This physical process is represented by a quadratic 
equation. (See Appendix C.) 

The first run of the new boundary conditions (See Figure 7.) showed the development 
of a western gyre and the entrance of the Gulf Stream into the region. Because the 
output did not closely resemble the schematic (See Figure 1.), constants then had to be 
varied until the combination was discovered which would more accurately represent the 
schematic (Figure 7). 

6    Data Analysis 

To test the credibility of the numerical calculations, model outputs must be compared 
to real numbers.  Data for comparison comes directly from the MASAR experiments 
Charts of the region showing current meter deployment contain velocity vectors for 
the upper level currents. To retrieve the data, the resultant speed was determined by 
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Figure 4: Slopewater model output (See Appendix D.4.) when using Csanady and 
Hamilton's parameters and boundary conditions. In this case, G is 2 X 106m3s_1. The 
curves are streamlines. The orientation of the output is: the northern edge is to the 
right of the page and the Gulf Stream is to the bottom. This orientation is the same 
for the next two products. The axes indicate the dimensions of the calculated matrix. 
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Figure 5: Slopewater output when using Csanady and Hamilton's parameters and 
boundary conditions. In this case, G is 6 x 106m3s_1 with the curves indicating the 
streamlines. The axes indicate the dimensions of the calculated matrix. 
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Figure 6: Slopewater output when using Csanady and Hamilton's parameters and 
boundary conditions. In this case, G is 107m35-1. The level curves are streamlines. 
The axes indicate the dimensions of the calculated matrix. 
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Figure 7:  Slopewarer 
curves are streamiiz:e=_ 
orientation of the CXLT^T- 

Stream is to the bcrr— 
closed gyre in the ~c-r^ 
Stream into the regie 
similar but the Cca^r;^ 
Appendix D.4). 

:~~--ca witn new boundary conditions imposed. The level 
IT .T055 show the number of »odes used in the matrix. The 
3: _^ northern edge is to the right of the page and the Gulf 
3 ^J^56- Some imPortant features in the output are the 
— ^rx con of the slope region and the intrusion of the Gulf 
-—- »mpared to figure 1, one notices that the features are 

«— ^or Current is overpowered by the Gulf Stream.   (See 
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Figure 8: Slopewater circulation using new boundary conditions. This output is the 
result of many runs looking for the coefficients that would produce features that closely 
resemble Figure 1. Note the closed gyre, the intrusion of the Gulf Stream, the Coastal 
Labrador Current, and what appears to be the change in direction of the Coastal 
Labrador Current. The axes indicate the number of nodes. The level curves are stream- 
lines. The orientation of the box is as follows: the northern edge is to the right of the 
page and the Gulf Stream is to the bottom of the page. 
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measuring velocities on a chart within the MASAR experiment report using the given 
scale. In order to compare the velocity vectors to the stream function, the resultant 
vectors had to be broken down into the u (the velocity in the x direction) and v (the 
velocity in the y direction) components. The stream function must be differentiated to 
derive the numerically calculated u and v components. 

7    Naval Applications 

The understanding of the coastal environment is important for military operations 
in the littoral environment. The dynamics within the area of operation affect many 
different warfares. In particular, knowledge of currents can be beneficial for successful 
mine operations, submarine warfare and anti-submarine warfare. Currents can even aid 
or hinder navigation. 

The slopewater region is potentially a very important tactical region. The entire 
eastern seaboard is bounded by the water mass. The Gulf Stream has a large influence in 
the region and warm core eddies are typically spun off in this area. These eddies and the 
fast moving current of the Gulf Stream, if not fully understood, could hinder navigation 
and mine sweeping. The change in the temperature profile alters the sound velocity 
profiles when warm core eddies are interacting with the slopewater mass. This provides 
submarines a better chance to remain undetected. Knowledge and understanding of the 
circulation of the slopewater and how the eddies move within the circulation should give 
the tactical commander a better idea of where to search for the enemy or where to hide. 
The currents in the slopewater are not as fast along the shelf as they are along the Gulf 
stream region. Understanding this and being able to determine the speed changes as 
you move shoreward will benefit navigation. 

The modeling of slopewater is applicable to many gyres throughout the world's 
oceans. The same techniques can be used to generate numerical schemes for any type 
of wind-driven circulation. If the Navy is interested in better understanding the coastal 
environments, numerical modeling is another approach that can be utilized. 

8    Future Developments 

The numerical scheme developed is highly simplified. It is two-dimensional, time 
independent, and based on a limited number of physical parameters. The region is 
rectangular and considered to be homogeneous and to have a constant depth. The wind 
stress curl is constant and the flux rate of the Gulf Stream is constant. The dynamic 
implications of warm core eddies and changes in temperature, pressure, and salinity are 
ignored. 

In order to improve the model, each of these factors should be addressed. It is not 
a reasonable expectation to have every influence play an accurate role in the modeling 
of the region. At the present time, the knowledge and ability is unavailable to tackle 
a problem of that magnitude. The parameters must be addressed either one or two at 
a time. For example, the region could have non-rectangular dimensions developed and 
the wind stress curl could be made into a function instead of a constant.   There are 
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many avenues of approach depending on the parameters of interest. 
Other improvements could be made solely on the mathematical techniques of com- 

putation. Speed of computation and truncation error can be improved in a number of 
ways. The discretization method could be altered to produce a non-uniform grid which 
allows for better mapping of the region of interest. The iterative technique could be 
changed as well in order to increase speed of computation. There are several avenues of 
approach to numerical improvements which develop in higher level mathematics. 

The numerical scheme has considerable room for improvement. However, the work 
accomplished is not trivial. The product resembles what is generally understood to be 
true about the circulation in the region. Improvements would allow for more accuracy 
and variation in the model outputs. 
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A    Development of Finite Difference Equations 

vVl,j = v**lij + Mij 

h2            h3              h4 

ip(x + h,y) = ip + tnl>x + -y1>xx + -y^xxx + ^xxxx 

h2            h3 ,          h4 , 
i){x -h,y) = ip-hrj)x + -^ipxx - -^ipXXx + -^Vxxxx 

k2            k3              k4 

ij)(x, y+k) = rp + k^y + —Tpyy + -^-|V>yyy + ^yyyy 

k2           k3             k4 

tl>(x,y- k) = 1p - ktpy + —ißyy - -ytpyyy + -^4>yyyy 

Add the four equations together to get the following: 

V>,-+i,j + V>,-i,j + 1>ij+i + i>i,j-\ = Wij + h2rpxx + k2i>yy 

Therefore, 

rl>xx ~ ^2 (^i+ij - 2^ij + 1>i-ij) 

^yy ~ fc2^«'J+1 " 2^' + ^^-^ 

Given 

V>r ~ 2fc(^»+ij _ V'.-i.j) 

V>y ~ 2fc(^J+l _ ^«J-l) 

A 

Jfe = 

n + 1 

6 
m + 1 

Substitute into the PDE for slopewater circulation. 

e(lpxx + ll>yy) + a(c^r + S^y) = W 

£ /'^,74i -2^,i +V-.-,,-i   + tA-M.,-2^,,4-^,-i,,\ + 

a[c(^-.^-^>)+J(^'-^-') 

(44) 

= W 

al^.j = W - a2V>,j+i - a^ij-i - atyi+\,j ~ a5^,_i,j 
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where al = -2e (p- + ^-j 
a2 = p + fjf 
„o     £ as a<> - P - 2fc 
«4 = p+n 
a5 = p- + ff 
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B     Separation of Variables 

$xx + i>yy = Q 

Boundary Conditions 

Suppose 

Then 

Substitute 

Divide by F"G" 

let -v/-^ = k 

i>(0,y) = 0 

V>(x,0) = 0 

V»(A,») = 0 

^(x,6) = 0 

1> = F(x)G(y) 

^ = F"G 

rpyy = FG" 

F"G = -FG" 

— = -—-- 
G" ~    F" ~ ~ß 

G = -G"n 

G + G"fi = 0 

G(y) - ci sinh ky + c2 cosh ky 

-F=-ßF" 

fiF" -F = 0 

F(x) = C3 sin kx + c4 cos kx 
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The general solution of ip becomes 

if)(x, y) = (ci sinh ky + c? cosh ky)(c3 sin kx + c4 cos kx) 

To solve for the exact solution, boundary conditions must be applied. 

0 = (ci sinh ky + c2 cosh ky){cz sin 0 + c4 cos 0) 

0 = c4(ci sinh fcy + C2 cosh fc) 

c4 = 0 

V>(x,0) = 0 

Let C1C3 = c = 1 
V»(A,y) = 0 

0 = (ci sinh 0 + C2 cosh 0)(c3 sin fcx) 

0 = (c2)(c3 sin fcx) 

c2 = 0 

V>(a:, y) = (ci sinh &2/)(c3 sin kx) 

0 = sinh A;?/sin &A 

0 = sin kX 

kX — TITC 

TVK 

Therefore the exact equation is 

, /      \       .   n^x  . ,  niry tp(x, y) = sin —— sinh —— 
A A 

The boundary condition for ip(x,b) is designated to be the first normal mode of the 
exact solution. It is given by 

V>(x, b) = sin — sinh — 
A A 
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C    Development of Boundary Conditions 

The Shelf boundary condition is ^>(0, y) = 0. 
The Southern edge boundary cpndition is ip(x,0) = 0. 
The Gulf Stream boundary condition is ip(l,y) = 0 when 0 < y < —. 

Where & < y < § , t/>(l,y) = ^(y - &) 
S is a point through which the line must pass. This point represents the maximum 

flux of the Gulf Stream. 

The Gulf Stream boundary orginates from the equation of a line which passes 
through the points (^,0) and (§,6). The derivation is as follows: 

y = mx + B 

X =    
m 

6 
m = -7- 

0 
2A 

2X6 .        b N 
X = — (J/-2Ä} 

The Northern edge boundary condition is ^(x,£) = [iÜÜib^iÜÜ] x2 + \n±s£\ x 

This boundary condition is based on a quadratic equation which must pass through the 
points (0,0), (f, -77), and (1,*). The derivation is as follows: 
f(x) = ax   +bx + c, where a,b, and c are constants to be determined below. 
To solve for the constants a,b, and c, substitute the coordinates into the quadratic 
equation. 
Solve for c. 
at (0,0) 

0=0+0+c 

c = 0 

at (f, -7?) 

-T, = a£2 + b£ 

at (1,<5) 

6 = a + b 

Therefore, a = 6 - b. 
Solve for b. 

-7? = a£2 + b£ added to -6£2 = -a£2 - b£2 yields 
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b = 
r,+se 

Solve for a by substitution. 

a = 

So, 

V>(x,-) = 
t+e x2 + 
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D    Mathematica Programs 

D.l    Boundary Verification 

(* dimensions of box *) 

lambda=10"9; 

b=2*Pi*10~8; 

(»depth of layer*) 

d=2*10"4; 

(♦force of wind*) 

F = 1; 

(*frictional dissipative term*) 

R=0.02; 

(* constants *) 

gamma=F*Pi/R/b; 

eta=N[Pi/b]; 

coriolis=lCr(-13); 

(* dimensions of matrix *) 

m= 64; 

n= 64; 

(* incremental step size *) 

k=b/lambda/(m+l); 

h=l/(n+l); 

disx=Table[N[i*h],{i,l,n}]; 

disy=Table[N[j*k] ,{j,l,m}] ; 
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(* constants *) 

eps= 1; 

alpha= 0; 

(* cosine *) 

c=0; 

(* sine *) 

s=0; 

(* wind stress curl *) 

W=Table[0,{i,m+2}]; 

(* constants *) 

al= N[-2*eps*(l/(k-2)+l/(h-2))]; 

a2= N[eps/(k-2)+alpha*s/(2*k)]; 

a3= N[eps/(k-2)-alpha*s/(2*k)] ; 

a4= N[eps/(h~2)+ alpha*c/(2*h)]; 

a5= N[eps/(h~2)- alpha*c/(2*h)]; 

al2 = a2/al;  al3=a3/al;  al4=a4/al;  al5=a5/al; 

(* Boundary Conditions *) 

glCyJ  = 0;  fl[x_]  = 0;  g2[y_]  = 0; 
f2[x_3= N [Sin [Pi x]*Sinh[Pi]] ; 

psi=Table[0,{i,m+2},-Cj,n+2}] ; 

newpsi = psi; 

Do[psi[[l,j+l]]=glCdisy[[j]]],  {j , m}] ; 
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Do[psi[[n+2,j+l]]= g2[disy[[j]]],  {j , m}] ; 

Do[psi[[i+l,l]]= fl[disx[[i]]],  {i, n>]; 

Do[psi[[i+l,m+2]]= f2[disx[[i]]], {i,  n}] ; 

Do[ 

Do[newpsi[[i,j]]= W[[i-l]]/al-al2*psi[[i,j+l]]-al3*psi[[i,j-i]] 
-al4*psi[[i+l,j]]-al5*psi[[i-l,j]],  {i,2,n+l},  {j,2,m+l>]\ 
error=Max[Abs [psi-nevpsi]];  Print[error]; 
Do[psi[[i, j]]=newpsi[[i,j]], {i,  2, n+1},  {j, 2, m+l>], 

•Cii, 50}] 

AA=ListContourPlot[Transpose[psi],ColorFunction->Hue] 

exactsoln[x_,y_]=Sin[Pi x]*Sinh[Pi y*lambda/b] 

zz=Table[exactsoln[disx[[i]] ,disy[[j]]] ,{i,n+2>,-Cj ,m+2}] 

ZZ=ContourPlot[exactsoln[x,y],{x,0,1},{y,0,b/lambda}, 
ColorFunction-> Hue] 

AAA=Show[AA,PlotLabel->Mnumerical"] 

PSPrint[AAA] 

zzz=Show[ZZ,PlotLabel->" exact"] 

PSPrint[zzz] 

Max[Abs[zz-newpsi]] 

AAAA= Show[GraphicsArray[{{AAA},{zzz}}] ] 

Display["graphl.ps", AAAA] 

PSPrint[AAAA] 
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D.2    Stommel Verification 

(* dimensions of box *) 

lambda=2*l(T7; 

b=16*10~7; 

(* depth of layer *) 

d=2*10~4; 

(* force of wind *) 

F = 1; 

(* frictional dissipative term *) 

R=0.02; 

(* constants *) 

gamma=F*Pi/R/b*lambda; 

eta=N[Pi/b]; 

coriolis=10"(-13); 

(* Gulf Stream flux rate *) 

G=2*1CT12; 

(* Coastal Labrador Sea Water flux rate *) 

K=4*10~12; 

(* matrix dimensions *) 

m= 64; 

n= 64; 

(* incremental step size *) 
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k=b/lambda/(m+l); 

h=l/(n+l); 

disy=Table[N[i*k],{i,l,m}] ; 

disx=Table[N[-j*h],{j,l,n}] ; 

(* constants *) 

eps= 1; 

alpha= l*lambda; 

(* cosine *) 

c=0; 

(* sine *) 

s= 0; 

(* wind stress curl *) 

W=Table[l,{i,l,m>]; 

(* constants *) 

al= N[-2*eps*(l/(k-2)+l/(h-2))]; 

a2= N[eps/(k~2)+alpha*s/(2*k)]; 

a3= N[eps/(k-2)-alpha*s/(2*k)]; 

a4= N[eps/(h~2)+ alpha*c/(2*h)] ; 

a5= N[eps/(h"2)- alpha*c/(2*h)] ; 

al2 = a2/al; al3=a3/al; al4=a4/al; al5=a5/al; 

(* Boundary Conditions *) 

gl[x_]=0;g2[x_]=0;fl[yj=0;f2[yj=0; 
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psi=Table[0,{i,m+2},-Cj,n+2}] ; 

newpsi = psi; 

Do[psi[[l,j+l]]=gl[disx[[j]]],  -Cj,  n}]; 

Do[psi[[m+2,j+l]]= g2[disx[[j]]],  {j ,  n}] ; 

Do[psi[[i+l,l]] = fl[disy[[i]]], {i, m}] ; 

Do[psi[[i+l,n+2]]= f2[disy[[i]]], -Ci, m>] ; 

Do[ 
Do[newpsi[[i,j]]= W[[i-l]]/al-al2*psi[[i,j+l]]-al3*psi[[i,j-1]] 
-al4*psi[[i+l,j]]-ai5*psi[[i-l,j]],  {i,2,m+l>,  {j,2,n+l}]; 
error=Max[Abs[psi-newpsi]];  Print[error]; 
Do[psi[[i,  j]]=newpsi[[i,j]3,  {i,  2, m+l>,  {j,  2,  n+1}] , 

■Cii,  50}] 

AA=ListContourPlot[psi,  PlotLabel->Stommel Verification, 
ColorFunction->Hue,Contours->20] 

PSPrint[AA] 

Display["stommelver.ps",  AA] 
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D.3    Csanady's Boundaries 

(* Gauss- Seidel, Stommel *) 

(* The real psi is related to this by psi by 

lambda* this psi(x/lambda, y/lambda)*) 

(* dimensions of box in meters *) 

lambda=2*10~5; 

b=16*10~5;scale=lambda/b; 

(* depth *) 

d=5*10"2; 

(* force of wind *) 

F=2.4*10"-10; 

(* frictional dissipative term *) 

R=0.0002; 

(* constants *) 

gamma=F/R;gammabar=gamma*lambda; 

(* beta plane approximation for Coriolis *) 

beta= 1.6*10~-11; 

(* constants *) 

alpha= d*beta/R;  alphabar=alpha*lambda; 

(*  incremental step size *) 

k=b/lambda/(m+l); 

h=l/(n+l); 

(* size of matrix *) 
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m= 41; 

n= 41; 

disx=Table[N[i*h],{i,l>n}]; 

disy=Table[N[j*k],{j,l,m}]; 

(* constants *) 

eps= 1; 

c= N [Cos[1.168]]; 

s= N[Sin[1.168]]; 

(* Gulf Stream flux rate *) 

G= 2*10"6  (*m~3/s*); 

(* Coastal Labrador Current flux rate *) 

K= 4*10-6 (*m~3/s*); 

(* wind stress curl *) 

W=Table[gammabar,-Cj ,l,m}]   (*m/s*); 

(* constants *) 

al= N[-2*eps*(l/(k~2)+l/(h-2))]; 

a2= N[eps/(k"2)+alphabar*s/(2*k)]; 

a3= N[eps/(k-2)-alphabar*s/(2*k)]; 

a4= N[eps/(h"2)+ alphabar*c/(2*h)]; 

a5= N[eps/(h~2)- alphabar*c/(2*h)]; 

al2 = a2/al; al3=a3/al; al4=a4/al; al5=a5/al; 

(* Boundary Conditions *) 
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g2[y_]  = G*y/b; 

gl[y_]  = lf[0 <y<b/2/lambda,0,-K*(2*y*lambda-b)/b/lambda]; 

fl[x_]  = 0; 

f2[x_]  =  (G+K)*x/lambda; 

psi=Table[0.11,{i,n+2},{j,m+2}]; 

Do[psi[[n+2,j+l]3 = g2[disy[[j]]],  {j , m>] ; 

Do[psi[[i+l,l]]= fl[disx[[i]]],  {i, n}] ; 

Do[psi[[i+l,m+2]] = f2[disx[[i]]] , {i,  n}] ; 

oldpsi = psi; error =1; ii=l; 

newdisx=Append[Prepend[disx,  0],  N[l]]; 

newdisy=Append[Prepend[disy, 0], N[l/scale]]; 

Print["m =        ", m,  "        n =    ", n] ; 

While[error >  10~-7, 
Do[psi[[i,j]]=W[[j-l]]/al-al2*psiCCi,j+l]]-al3*psi[[i.j-l]] 
-al4*psi[[i+l,j]]-al5*psi[[i-l,j]], {i,2,n+l}, {j,2,m+l}]; 
error=Max[Abs[psi-oldpsi]];Print[ii,"       ",  error]; 
Do[oldpsi[[i, j]]=psi[[i,j]]. <i. 2, n+1}, {j, 2, m+1}]; 
ii=ii+l]; 

AAl=ListContourPlot[Transpose[psi] , PlotLabel->"psi" ,  Contours->20, 
ColorFunction-> Hue, AspectRatio->3,Color0utput->CMYKColor] 

PSPrint[AAl] 

Display["graph3.ps", AA1] 
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D.4    New Boundaries 

(* Gauss- Seidel, Stommel *) 

(* The real psi is related to this by psi by 

lambda* this psi(x/lambda, y/lambda)*) 

(* dimensions of box *) 

lambda=l; 

b=10 ;scale=lambda/b; 

(* depth *) 

d=l; 

(* force of wind *) 

F=l; 

(* frictional dissipative term *) 

R=l; 

(* constants *) 

gamma=F/R;gammabar=gamma*lambda; 

beta= 1; 

alpha= d*beta/R; alphabar=alpha*lambda; 

(* incremental step size *) 

k=b/lambda/(m+l); 

h=l/(n+l); 

(* size of matrix *) 

m= 64; 

n= 32; 
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disx=Table[N[i*h],{i,l,n>]; 

disy=Table[N[j*k] ,{j,l,m}]; 

(* constants *) 

eps= 1; 

c= N[Cos[1.168]]; 

s= N[Sin[1.168]]; 

(* Gulf Stream flux rate *) 

G=  1   (*m-3/s*); 

(* Coastal Labrador current flux rate *) 

K= 1 (*m-3/s*); 

(* constants *) 

mu=0.25; 

eta=l; 

(* wind stress curl *) 

W=Table[gammabarJ-[j,l,m}]   (*m/s*) ; 

(*  constants *) 

al= N[-2*eps*(l/(k-2)+l/(h-2))]; 

a2= N[eps/(k~2)+alphabar*s/(2*k)] ; 

a3= N[eps/(k~2)-alphabar*s/(2*k)] ; 

a4= N[eps/(h"2)+ alphabar*c/(2*h)] ; 

a5= N[eps/(h~2)- alphabar*c/(2*h)] ; 

al2 = a2/al; al3=a3/al; al4=a4/al; al5=a5/al; 
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(* Boundary Conditions *) 

gulf[y_]  = If[0<y<b/2/lambda,0,2*G*lambda/b*(y-b/2/lambda)] ; 

shelf [yj  = 0; 

south[x_]  = 0; 

north[x_]  =  ((G*(mu+mu~2)-(eta+G*(mu~2)))/(mu+mu-2))*x~2 
+(eta+G*(mu"2))/(mu+mu~2)*x; 

psi=Table[0.11,{i,n+2},{j,m+2}]; 

Do[psi[[l,j+l]]=shelf[disy[Cj]]], {j , m>3 ; 

Do[psi[[n+2,j + l]]= gulf[disy[[j]]], -Cj , m}] ; 

Do[psi[[i+l,l]]=south[disx[[i]]],  {i,  n>]; 

Do[psi[[i+l,m+2]]= north[disxCCi]]],  {i, n}]; 

oldpsi = psi;  error =1;   ii=l; 

newdisx=Append[Prepend[disx,  0],  N[l]]; 

newdisy=Append[Prepend[disy, 0],  N[l/scale]]; 

Print["m =        ", m,  "        n =    ",  n]; 

While [error >  1CT-7, 
Do[psi[[i,j]]=W[Cj-l]]/al-al2*psi[Ci)j

+l]]-al3*psi[[i,j-l]]- 
al4*psi[[i+l,j]]-al5*psi[[i-l,j]] . {i,2,n+l},  -[j,2,m+l>]; 

error=Max[Abs[psi-oldpsi]];Print[ii,"       ",   error]; 
Do[oldpsi[[i,  j]]=psi[[i,j]] ,  "Ci.  2,  n+l>,  {j ,  2, m+1}] ; 
ii=ii+l]; 

AAl=ListContourPlot[Transpose[psi], PlotLabel->"psi ", 
Contours-> 20,  ColorFunction-> Hue,AspectRatio->3, 
Color0utput->CMYKColor] 

PSPrint[AAl] 

Display["graph6.ps", AA1] 


